In reference to the story of What's Up Doc? on page 14-15 of the last Flyer I’m enclosing some additional photos of the ship. (No.1) ship 34 before the accident. (No.2) Crew Chief M/sgt Harold C Jacobs in front of wreck. (No.3) 34 under repair after being shot up near Vis. (No.4) Ordnance crew with truck under the direction of M/Sgt Leo Matranga (standing by the truck with back to the camera), Lt J R Dowless Operations Officer, (in ODs and O’seas cap between the fuselage and No 2 engine) supervises the removal of time fused bombs. (No.5) Maintenance crew of ship 34 preparing an engine change under dust free conditions. From left they are M/Sgt Harold C Jacobs, Eddie Carpenter, and electrician Henry Glass.

M/Sgt Harold C Jacobs, 824 sq.

Editors Note: The pilots Flight Manual called for take off power in auto rich, then an adjustment to auto lean at cruise power. During WWII many pilots were taught to only use the auto detents for carburetor mixture adjustments. It was only after Col Lindberg went to the South Pacific to teach the P-38 pilots how to lean their engines to best power to increase the range of the fighters, that this practice was accepted. In this procedure, the mixture control lever is raised out of the auto detent while the increase in RPM is observed. At the point of further leaning when the RPM starts to drop off again, the mixture lever is stopped. This is called, "Leaning to Best Power". The radial engines of WWII required a rich mixture for take off power to aid in cooling the cylinder head and the exhaust valves.

Some fighter planes of WWII (Gruman F6F) used water injection for cooling at high power demands such as at take off and fast pursuit. The water-methanol alcohol mixture replaced the fuel that was used for cooling more efficiently allowing greater take off power. In the case of the R-2800 engine, as used in F6F, F4U, and the later Commerical Douglas DC-6, the increase in power from 1950 HP to 2400 HP was quite dramatic when using water injection.