killed and three were missing. One 88 mm and one 20 mm gun were hit with unknown results. The planes assaulting the flak positions were followed by the main column of bombers which were forced to fly a dog leg course to avoid the bombed gun positions. Aircraft negotiated the corridor for a period of two hours and a half after the attack was made without encountering or observing flak bursts. On previous mission the Germans had fired at bombers in the restricted zone even though they were beyond the limits of accurate engagement.

The report concludes that bombers at high altitude can identify and drop 260 frag bombs with proximity fuses accurately enough to cause diminution of accuracy and intensity of AA opposition.

Ground reports from special agents indicate that frag bombs with proximity fuses reduce morale and accuracy of flak personnel, kill and injure flak personnel and cause damage to AA equipment. It was also found that bomber crews were very enthusiastic about flying anti flak missions as they were the ones most effected by this action and it was a way to fight back at the AA Gunner.

It was found that some proximity fuses were subject to early firing higher than 17 feet above the ground reducing their effectiveness against enemy installations. Each bomb burst distributed fragments in a circular pattern of approximately 115 to 120 feet, but not of uniform density.

There was a certain amount of overlap of the pattern within each element; efforts to increase the dimensions of these patterns by using a longer inervalometer setting and flying a looser formation would increase the efficiency by reducing overlap and spreading the bombs more evenly along the bomb run.

Editors Note:

This report is of a type of attack plan taking place from high altitude to avoid small caliber anti aircraft fire. It is obvious that bombing of anti aircraft batteries would have to take place when ideal weather was in place and target identification could be determined visually. I am not aware of target identification using intersecting radio beams by the 49th Wing Aircraft of 15 Air Force as used by the 8th Air Force in England. Because this operation took place during the waning days of the European war, it could not be refined further. It would seem that a coordinated attack using P38s as fighter bombers as a second wave at lower altitude just after the high altitude bomb run would have a better success rate in destroying guns and equipment while the defending troops were still hunkered down and away from their small caliber guns. In addition the use of 500 bombs or larger in conjunction with the frag bombs would be more effective in destroying heavier gun laying equipment. In reading the full report I was struck with the notion that this type of flak suppression was only temporary as heavy artillery pieces such as the 88 mm and 105, would survive light weight frag bombs quite easily. We have heard of other flak suppression attacks by 49th Bomb Wing aircraft where three ship elements were diverted from the main bombing formation and made diving attacks on flak installations that blocked the territory standing in front of the target.

It was well known during the war that the German defenders employed mobile flak either mounted on flat bed trucks or rail cars. In the case of the 88 gun, it could be transported using its own wheeled gun carriage. This mobility allowed anti aircraft fire to appear suddenly in areas where no activity was plotted previously. You can’t bomb a target whose whereabouts is unknown.

The Allies had hoped to close the European war in the fall of 1944, but Adolph Hitler’s insistence on a suicidal defense of the Third Reich to the bitter end and the terrible winter of 1943-44 prolonged the war into the Spring of 1945.

Aircraft production was running full blast back in the USA and the training facilities were still turning out flight crews on a record clip at this time resulting in a surplus of aircraft and crews for the European conflict. It was planned that this surplus would be used for the final assault on Japan.

It is true the B-24 performed better at lower altitude as Felix suggests. In the Pacific Theater of Operations where lower altitudes were the general rule, the B-24 was superior to the B-17 because of its longer range. This was due to the low drag Davis Wing. Both the B-17 and B-24 were sluggish at high altitude because of war contingencies. Both aircraft in operational configuration were flown at higher gross weights than the original design specification. A good example to illustrate this point is the addition of nose turrets to both the B-24 and B-17 to counter the head on fighter attacks favored by the Luftwaffe. This alone added about 500 pounds to the aircraft without a corresponding increase in engine horsepower to carry the additional weight.

The whole prewar design philosophy was to defend the bomber from fighter attacks emanating from the rear. In the nose turreted B-24 J and H, the pilot’s armor was behind him, where the danger was greater, instead of in front of him.